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Resumo 
Este artigo apresenta parte de um estudo fundamentado na problemática da 
demonstração na matemática escolar. Descreve o modo como quatro alunos do 9.º 
ano exploraram uma tarefa relacionada com a descoberta de eixos de simetria em 
várias figuras geométricas. A demonstração, que os mesmos construíram, teve 
essencialmente uma função explicativa. O papel da professora na negociação do 
significado de demonstração e da sua necessidade é igualmente analisado. Os 
alunos desenvolvem primeiro uma compreensão prática sem consciência das 
razões que fundamentam as afirmações matemáticas e só depois uma compreensão 
teórica que os conduz à construção de uma demonstração. 
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Abstract 
This paper presents part of a study that deals with the problem of proof in schol-
arly mathematics. It describes the way in which four students in 9th grade explored 
a task related to the discovery of symmetry axes in various geometric figures. The 
proof constructed by them had essentially an explanatory function. The teacher’s 
role in meaning negotiation of proof and its need is also analysed. One outcome 
discussed here is that students develop first a practical understanding with no 
awareness of the reasons underlying mathematical statements and after a theoreti-
cal one leading them to a construction of proof. 
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Theoretical issues 
The study’s framework is rooted in the theoretical frame of activity 

theory in the line of Vygotsky and Leont’ev. Drawing on a Vygots-

kian approach, Wertsch (1991) uses the Bakhtinian construct of 

‘voice’ to emphasise the social origins of individual mental functio-

ning. The process whereby one voice speaks through another voice 

in a social language is termed ‘ventriloquation’ by Bakhtin (1981). 

The word is always half someone else’s. So there is a certain interfe-

rence of one voice on another accompanied by a partial and correla-

tive subordination of the latter. 

Mathematics learning is seen as a situated phenomenon (Brown et 

al., 1988; Lave, 1988; Wenger, 1998). As the school context plays a 

fundamental role, it is not possible to separate activity, people 

acting—and respective interactions—and the artefacts that mediate 

that action. All those dimensions are intrinsically interwoven. The 

study draws also from embodied cognition perspective (Lakoff et al., 

2000) assuming that mathematical concepts are structured by the 

nature of our bodies and the particular way we function in the world. 

Knowledge is not independent of the situation in which it is produ-

ced. If situation is structuring cognition, then we can assume also 

that knowledge and activity are inseparable and mutually constituti-

ve. The centrality of activity in cognition constitutes the base for 

study theoretical background. It is the mutual interaction between 

acting and knowing that shapes one another reciprocally (Rodrigues, 

1997). Cognition includes the use of representations but it is not 

based on them. The emphasis falls on the notion of action and the 

relationship between the subject and the world is redrawn: the sub-

ject and the object, that is, the interpreter and the interpreted define 

one another simultaneously and they are correlatives (Varela, 

1988/s.d.); they are not independent nor are separate entities as 

assumed by the rationalistic perspective. 

Proof is inherent to the nature of mathematics as a science (Hanna et 

al., 1996). The notion of proof has evolved throughout the history of 

mathematics and it is nowadays the subject of debate among mathe-

maticians. Yet proof maintains a central role in mathematics (Hanna 

et al., 1996; Thurston, 1995). So the study focuses on the philosophy 

of mathematics discussing questions such as (a) the nature of 

mathematical objects; (b) the relationship between the experimental 

reality, the natural and human world and mathematics; and (c) the 

issue of truth. The study discusses the epistemological status of 
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proof, assuming mathematics as a human and social construction, 

but non-arbitral. It is this non-arbitrary that explains the parallelism 

between the physical reality and the mathematical one (Hersh, 

1997). According to Ernest (1993), mathematical knowledge deve-

lops through conjectures and refutations (Lakatos, 1994) and relies 

on linguistic knowledge, conventions and rules. 

The study also focuses on the curriculum in general terms and speci-

fically the mathematics curricula, regarding how proof must be inte-

grated. Many mathematics educators attach great importance to 

proof in the curriculum, claiming that there should be a gradual and 

continuous transition from justification and explanation activities to 

the proof itself, from elementary level (Boavida, 2005; Boero et al., 

1996; Brocardo, 2001; Harel et al., 2007; Healy et al., 2000; Mariot-

ti, 2000; Veloso, 1998; Yackel et al., 1994). Others (Balacheff, 

1991; Duval, 1991), whilst highlighting the prominent role of proof, 

advocate, however, that the argumentation practice can hinder the 

learning of proof, assuming the existence of a contradiction between 

the everyday argumentation and the proof: “mathematical proof 

should be learned “against” argumentation, bringing students to the 

awareness of the specificity of mathematical proof” (Balacheff, 

1991: p. 189). The more recent curricular documents, in Portugal 

and in other countries, have attached major importance to proof 

(DGIDC, 2007; Healy et al., 2000; NCTM, 2000). Two essential 

reasons justify the relevance of teaching of proof: (a) a more com-

prehensive vision of the nature of mathematics (de Villiers, 2004; 

Hanna, 2000; Hanna et al., 1993; 1999; Veloso, 1998), and (b) the 

promotion of mathematical understanding through the primordial 

function of proof in mathematics education, the explanatory function 

(Hanna, 2000; Hanna et al., 1999; Hersh, 1993; 1997; NCTM, 

2000). 

However, internationally, studies in mathematics education provide 

empirical evidence that students reveal a great difficulty in unders-

tanding the need for proof (Brocardo, 2001), understanding the func-

tions of proof (Harel et al., 2007) and constructing proofs (Healy et 

al., 2000). The majority of students of various levels (from the more 

basic to the first years of university level) use particular instances to 

establish the truth of conjectures they state (Boavida, 2005; Chazan, 

1993; Hanna et al. 1993; Harel et al., 2007; Healy et al., 2000; 

Machado, 2005; Recio et al., 2001; Rodrigues, 1997; 2000). The 

discussion of mathematical ideas, developed within the small group 
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and orchestrated by the teacher within the class, plays a decisive role 

(a) in the emergence of proof meaning, (b) in the motivation to pro-

ving the mathematical statements (Alibert et al., 1991; Boavida, 

2005; Fonseca, 2004), and (c) in changing the spontaneous attitude 

of students towards construction of proof (Mariotti, 2000). Accor-

ding to Harel et al. (2007: p. 830), “upper elementary school chil-

dren can deal with proof idea or actions, and . . . high school stu-

dents can develop meaningful understanding of proof if they are 

taught appropriately”. 

1. Aims and Methodology of the Study 
The methodology adopted has an interpretative nature because it is 

adequate for the aims of the study that examine: (1) the role of proof 

in a classroom in various aspects such as (a) mathematical unders-

tanding, (b) validation of mathematical knowledge, and (c) mathe-

matical communication; and (2) the relationship between the cons-

truction of proof and the social practice developed in a classroom. 

The social practice is analysed drawing on a hermeneutic conception 

of activity and context (Winograd & Flores, 1993) and on a social 

theory of learning (Wenger, 1998) by questioning (a) the students’ 

group dynamics and (b) the power relations within the students’ 

group. In contexts of work using inquiry pedagogy, the study intends 

to answer these questions: (1) what is the nature of proof in a school 

context?; (2) what is the role of proof in students’ mathematical acti-

vity?; and (3) how does the construction of proof relate to the social 

practice developed in mathematics classroom? 

The analysis unit was proof constructed by students. Through the 

analysis of scholarly mathematics practice, I tried to understand how 

students reason in this practice, how the meaning of proof is negotia-

ted, and how the process of proving evolves over time, studying the 

phenomenon in its natural setting—the mathematics classroom. For 

that reason, I paid attention to all aspects concerned with students 

practice: their utterances, their acting, their facial expressions, the 

mediator resources. 

The data were collected in a public school in a class of 9th grade, 

over a year. Four students were videotaped. The researcher played 

the role of participant observer, having observed and participated in 

all mathematical activities of the class during 16 lessons in which 

inquiry tasks were explored. The data were collected by: (a) video 

record of mathematical activities of students, (b) audio record of 

students’ dialogues, (c) field notes made by the researcher, (d) video 
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record of students and teacher semi-structured interviews, and (e) 

documental analysis of the work done by students and of video and 

audio records. 

The video records assume a great importance in data analysis becau-

se they allow observations of behaviour procedures (as many as 

necessary) after they have occurred. They also enable the researcher 

to capture details that could be ignored by her direct observation in 

the classroom when the activity was taking place. 

2. Discussion of some results 
In order to present details data in this paper, I only chose episodes 

which occurred within the target group related to a single task: the 

discovery of the number of symmetry axes of various geometric fig-

ures, using mirrors. 

Structuring resources 

Mirrors and the drawing of symmetry axes were structuring re-

sources since they shaped the processes of conjecturing and con-

structing a proof. According to Lave (1988: pp. 97-8), “such resour-

ces are to be found not only in the memory of the person-acting but 

in activity, in relation with the setting, taking shape at the intersec-

tion of multiple realities, produced in conflict and creating value”. 

Students used mirrors, first, to discover the localization of triangle 

and hexagon symmetry axes. After, they put the mirrors on the cor-

rect localization of symmetry axes, without drawing them. They had 

visualised the symmetry axes: they didn’t search for the right locali-

zation of the mirror. Here, the act of putting the mirror had merely 

confirmed what students had visualised before. Since the teacher had 

demanded that they draw the axes, students drew them using the 

ruler, dispensing with the mirror. They drew the axes where they 

saw them through their mental images. The reified character of 

drawing axes was very important to the conjecture formulation (ena-

bling counting and counting again) and to the production of proof 

(enabling the observation by where cross the axes). Wenger (1998: 

p. 58) defines reification as “the process of giving form to our ex-

perience by producing objects that congeal this experience into 

‘thingness’”. Reification shapes the experience: drawn axes changed 

students experience by focusing their attention and enabling higher 

levels of understanding. According to Wenger (1998: p. 61), the 

power of reification relies on “its succinctness, its portability, its 

potential physical persistence, its focusing effect”. After drawing the 
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axes, students used the mirror twice as a confirming tool. Sara used 

it to verify if Ricardo had drawn the pentagon’s axes correctly. Ri-

cardo used it to show to Sara that she was wrong when she drew an 

axe linking two vertices, on the heptagon. First Sara began stammer-

ing out a few words pretending to defend its construction using a 

mathematical argument—“If I put like this it will measure”—but 

Ricardo didn’t let her finish—“Mirror!”. He used this artefact as an 

empirical argument to show the incorrect localization and the correct 

one. So the mirror validated Ricardo’s assertion, arbitrating the dis-

cussion between him and Sara. 

Conjecturing 

The observation of the pattern related to the same number of sides 

and symmetry axes of the first regular polygons appeared in the ta-

ble—triangle and square—led pupils to generalise the pattern to the 

other regular polygons and to state a conjecture: “I can see that the 

number of sides and the number of axes will be always equal.”—

said Sara. Three episodes show that students do not regard this con-

jecture as a suspect proposition: they believe it is true. 

Episode 1. This conjecture will be rejected, for a moment, by 

Sara and Maria, with a lot of resistance, when they were faced with 

what they judged to be a counter-example. The hexagon was repre-

sented in the paper immediately on the right of the square in an un-

usual position (Figure 1) and they assumed to be the pentagon, fol-

lowing the same order of the table. 

 
 

Figure 1. Hexagon position 

Sara and Maria reveal difficulty in recognizing the figure in a differ-

ent position, that is to say, in using the capacity of perceptual con-

stancy (Del Grande, 1990). Sara, perplexed, counted and counted six 

axes, for a total of five times, where she expected to count just five 

axes, according to the stated conjecture. Then, disillusioned, Sara 

wrote the number six, in the table, below the number five respecting 
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to the sides. After a while, Ricardo pointed to the hexagon affirming 

that it had six sides. And the two girls corrected what they had writ-

ten before. This episode reveals the conviction on the conjecture. 

The two pupils had just yielded to the evidence of six axes in a poly-

gon that they thought had five sides after counting the axes a lot of 

times. In spite of the fact that students believe in the conjecture, they 

would probably not reject the contradiction by excluding it as a spe-

cial case, which Lakatos (1994) named ‘monster-barring’. However 

it is impossible to know how their reasoning would evolve in this 

case because Ricardo’s intervention had dissolved the contradiction. 

Episode 2. Ricardo had drawn five axes on the heptagon. 

Bernardo refuted this, after counting them: 

B- Silva, this is wrong, Silva. Seven. 

R- Seven or five? 

B- It’s missing to draw yet…  

R- Ah! Give it to me! (he draws two axes more on the hepta-

gon). 

Bernardo did not argue based on referring to the figure symmetry 

nor did he use the mirror to confirm or to indicate the missing axes. 

He just saw that his counting did not coincide with the conjecture 

that affirms that a polygon of seven sides has seven axes. It is a refu-

tation based on the power of the conviction that the conjecture is 

true. 

Episode 3. Sara drew some axes on the octagon. Then, she 

counted them and continued drawing the other axes until she had a 

total of eight axes. The conjecture guides her work helping her see-

ing where they are located, since she assumes that must draw eight 

axes. 

So, when exploring the task, students generalise to n sides the pat-

tern observed in concrete polygons, assuming that it is true. They 

wrote “The conclusions we can achieve that’s [sic] the number of 

sides of regular polygons is always equal to the number of symmetry 

axes” and in the table they wrote n axes below n sides. The ongoing 

process of sequence of regular polygons deals with potential infinity 

(Fischbein, 2001; Lakoff et al., 2000) because it is an uncompleted 

sequence since we cannot construct the last polygon corresponding 

to the final result. However, when students complete the table, they 

disconnect from the concrete polygons and they think only about the 

sequence of natural numbers (starting in 3) according to the number 
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of sides and symmetry axes. In this sequence, n is conceived by stu-

dents as a variable assuming any integer value larger than 2, as well 

as ∞, taken as a number in an enumeration—the actual infinity, con-

ceptualised metaphorically by Basic Metaphor of Infinity (Lakoff et 

al., 2000) as a final and unique resultant state (the ‘natural’ and 

unique ∞ larger than any finite natural number and beyond all of 

them, taken as an endpoint in an enumeration). Here the Basic Meta-

phor of Infinity is applied to the special case of enumeration through 

the addition of the metaphorical completeness. This conjecture starts 

from the potential infinity of an unending sequence without a final 

polygon to establish a relationship between the number of sides and 

the number of symmetry axes of regular polygons. So when students 

do this generalisation, they conceptualise the ongoing process of the 

sequence of natural numbers in terms of a completed process, that is 

to say, they produce the concept of actual infinity. 

Also when conjecturing about the infinity of symmetry axes existing 

in a circle, students apply the Basic Metaphor of Infinity in this spe-

cial case. We can see a brief extract of their dialogue: 

S- Look, the circle... It has axes… It has, it has infinite sym-

metry axes… 

R- The circle?? The circle?? Saaaara!!! Of course it has infi-

nite. The circle is all round.  

(…) 

B- I don’t know if it is infinite. 

Why would Bernardo doubt about the infinity of symmetry axes of 

circle? This is an abstract idea. Even if Bernardo put the mirror on 

the circle, he would put it a finite number of times. Even if Bernardo 

draw the circle’s symmetry axes, he would draw a finite number of 

axes. It would be a drawing that represents an abstract idea that can 

never be put in practice. Considering infinite symmetry axes in a 

circle implies to consider also infinite points in a circumference. It is 

more difficult to conceptualise the infinity in a limited object with 

beginning and ending such as a segment or a circumference than in a 

straight line. When Ricardo says “The circle is all round”, he is con-

ceiving that in a circle it is always possible consider an axis between 

any two axes and also it is always possible existing a point between 

any two points of the circumference. The infinity of symmetry axes 

of a circle is numerable type (Caraça, 1998) characterised by being 

discrete and infinitely large. The geometric point has no dimensions 

and consequently it exists an infinity of points between any two 
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points of the circumference. It is a type of infinity characterised by 

its continuity and density (Caraça, 1998). Given any arc circle, 

shorter it would be, it is always possible to divide it in half and to get 

a shorter one. So here we enter the area of infinitely small things. 

The act of dividing in half is a mental construction that goes on un-

limitedly. According to Lakoff et al. (2000), the aspectual system, 

that characterizes the structure of events as we conceptualise them, is 

the fundamental source of the concept of infinity. In life, nothing 

goes on forever. Yet we can conceptualise events as not having 

completions (imperfective aspect). Let us see the Basic Metaphor of 

Infinity applied to the arc circle: 

 

 

The Basic Metaphor of Infinity applied to the arc circle 

The act of dividing in half any arc, being an iterative process that 

goes on indefinitely and produces n states, is conceptualised as a 

complete process with a final resulting state, producing the actual 

infinity. Therefore the idea of infinite points of the circumference is 

based on cognitive mechanisms that all people use everyday as the 

aspectual schemas and the conceptual metaphor (Lakoff et al., 

2000). Despite the two different types of infinity in this conjecture—

numerable and infinitely large type infinity of axes; continuum and 

infinitely small type infinity of points of the circumference—we can 

affirm that it is the dense nature of infinity of points of the circum-

ference that leads to the other one, extending the symmetry axes of 

circle until the infinity. In spite of the fact that these infinities are 

different, they are conceptually related and shape each other. 

Producing a proof 
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So students begin their work by conjecturing. In this work 

phase, they believe their conjecture is true but they do not yet under-

stand why it is true. The experimental work done with mirrors was 

not enough to foster a deeper mathematical understanding. As Ma-

son et al. (1980) points out, learning only occurs when students re-

flect on their experimental work. It is this reflective understanding 

that leads them doing more generalisations and constructing a narra-

tive proof with informal characteristics: “In regular polygons: Odd– 

the symmetry axes cross vertex-side, and that is the reason why they 

have the same number of symmetry axes and of vertices; Even- the 

symmetry axes cross side-side and vertex-vertex and that is the rea-

son why they have half of symmetry axes in relation to the sum of 

vertices with sides”. For polygons with odd number of sides, stu-

dents describe by where axes cross them and explain why it is the 

same number, referring to the vertices, assuming implicitly that in a 

polygon there are so many vertices as sides. For polygons with even 

number of sides, they describe by where axes cross them and explain 

why it is the same number, in spite of the fact that they do not refer 

explicitly the equality of numbers: this equality would be deduced 

from the relation reported by them—“half of symmetry axes in rela-

tion to the sum of vertices with sides”—and could be expressed al-

gebraically as nn
=

2
2 . 

This proof has multiple functions (de Villiers, 2001; 2004; 

Hanna, 2000): verification, explanation and communication. How-

ever, for students proof had a unique function: explaining why their 

conjecture was true. For them, the truth was yet established by con-

jecturing. It is for that reason that they do not feel need to deduce 

explicitly the equality of the number of sides and axes for polygons 

with even number of sides for the purpose of verifying the truth ex-

pressed by the conjecture. 

The teacher discourse when interacting with group members 

and the questions posed by the task have a fundamental role in fos-

tering more complex levels of student mathematical thinking. One of 

the questions of the task (2.c) was of fundamental importance to lead 

students constructing a proof: “How are the symmetry axes in rela-

tion to the vertices and sides? (By where do the axes cross?)”. This 

question provokes students’ reasoning moving far away from the 

mere conjecture that the number is the same. I will present here two 

episodes showing the interactions between the teacher and the target 

group that illustrate the meaning negotiation of proof. 
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Episode 4. When students were drawing the axes and complet-

ing the table, the teacher said “Besides counting the quantity, how 

many are, don’t forget to observe how you drew them—you linked 

what with what, ok?—to be able to answer the following questions”. 

The teacher focuses students’ attention on the way in which axes 

cross the polygons. It is evident here the importance of the reified 

character of drawn axes: the teacher does not demand the observa-

tion on the way in which they draw them, at the moment they do the 

drawing; it is an observation after the drawing. Effectively when 

students draw the axes they develop a practical understanding; at the 

moment, they are not aware of the different behaviour of symmetry 

axes of regular polygons with odd and even number of sides. It is 

after this practical understanding that students develop a reflective 

one (Heidegger, 1999) that will enable them to construct a proof for 

explaining why it is always the same number. However this moment 

is premature to teacher’s intervention: they continued drawing the 

axes without observing consciously where they cross. Later, when 

they faced with the question 2.c), students did not understand its 

meaning and demanded the teacher’s help—“Teacher, I do not un-

derstand the c)”, said Sara. They did not remember the previous 

teacher’s intervention made too prematurely. 

Episode 5. This episode begins with Sara’s request of 

teacher’s help, referred to in episode 4. 

S- Teacher, I do not understand the c). 

T- Then, what do you not understand in c)? Go on… 

Sara stammers out a few words reading the question and the 

colleagues read the question 2.c) for the first time.. 

R- Well, it is here that I said it was the mediatrix. 

T- Go on… And are they all? Do they all have that position 

that we are referring to there? (points to the chalkboard) All 

axes… 

R- All axes vertex-side… 

T- (…) The question here is: will the symmetry axes’ position 

be always the same? (…) (pointing to the triangle) But, for ex-

ample, does it link the same elements, always? The same type 

of elements? Or does it link different elements? 

B- Different elements. 

T- (pointing to the triangle again) That it is a vertex with the 

opposite side’s midpoint. And the three axes are of same type, 

isn’t it? (pointing now to the square with the ruler) So now 
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here, in the square. 

R- (immediately) Side with side. Vertex with vertex. 

T- And how many, how many do link opposite sides, parallels? 

R- Two. 

T- Two. And how many do link opposite vertices? 

R- Two. 

(…) 

T- (pointing to the pentagon) Now here. Let’s go to this of 

five. 

B- It’s vertex-side and side-side. 

T- Is it always vertex… is it always side-side? 

R- No. It’s vertex-side. 

T- It is always vertex-side, isn’t it? 

R- Teacher, then the odd is vertex-side and the even vertex-

vertex, side-side. 

T- Well, go on! You are thinking of a theory, aren’t you ? 

Well, let’s see if that theory makes sense. Let’s verify it. Let’s 

go! (she goes away).  

Ricardo looks attentively to the paper where the polygons are 

represented; he counts and writes something near each poly-

gon. 

First, Ricardo was centred on the case of polygons with odd 

number of sides—“All axes vertex-side…”—and on the fact that 

symmetry axes cross perpendicularly the midpoint of sides, assum-

ing a symmetry axe as a mediatrix of the side polygon. As we can 

see, the students’ awareness of the different way of axes crossing in 

polygons with odd and even number of sides emerged only during 

the dialogue with the teacher when she focused their attention on this 

aspect, pointing to concrete polygons such as the triangle, square and 

pentagon. Something appropriated before by the action of drawing 

the axes has arisen out: the reflective understanding after the practi-

cal one, according to Heidegger (1999). And this is why Ricardo has 

answered so quickly when the teacher pointed to the square. The 

particular instances are resources that help students in generalising. 

It was by looking at the concrete polygons pointed out by the teacher 

that the general principle of axes crossing for all polygons with odd 

and even number of sides emerged. The teacher has valued Ri-

cardo’s generalisation naming it a theory but she did not want vali-

date it. She asked students to verify that theory, soliciting them im-

plicitly by testing the generalisation with more specialisations. It was 
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what Ricardo did after the teacher withdrew.  There is a continuum 

movement between specialisation and generalisation. She had also 

asked about how many axes cross opposite sides and opposite verti-

ces in the square but it was a premature question: they were not yet 

thinking about the relationship between the Ricardo’s theory and the 

conjecture. The teacher withdrew from the group at the moment she 

felt students understood the question’s meaning and they were in a 

productive phase of generalisation needed for proof construction. 

Later, the teacher1 will negotiate the need of a proof and its meaning: 

“Now try explaining, based on that, based on crossing in a way to 

the odd and in another way to the even, why it is always the same 

number”. Students did not feel need for establishing any relationship 

between Ricardo’s theory and the conjecture stated before. And this 

relation was not asked explicitly in the formulation of the questions 

of the task. This intervention was fundamental to foster students’ 

reasoning toward a proof. 

In closing 
Students regard the conjectures as conclusions: they are certain 

                                                 
1 This intervention was made by the researcher playing here a teacher role. 

about the truth of conjectures they self say and they do not feel the 

need to submit them to verification. The teacher has a fundamental 

role negotiating the need of a proof in Mathematics for guaranteeing 

the validity of a statement to the generality of cases. It implies an 

epistemological change: while in other disciplines as Natural Sci-

ences or Physics it seems quite natural to accept a fact as a true one 

when it is supported by empirical evidence, in mathematics the truth 

is just accepted on the basis of a theoretical deduction (Hanna, 2000; 

Hanna et al., 1996; 1999). 

Results from Rodrigues (1997) and from the present study are con-

vergent in this point: according to the philosophical perspective of 

Heidegger (1999), the essence of cognition is “the pre-reflective 

experience of being thrown in a situation of acting” (Winograd & 

Flores, 1993: p. 97, author italics). The practical understanding is 

immediate and primary. Students develop a theoretical and reflective 

understanding only after developing a practical one. The process of 

generalisation and the process of construction of a proof are inti-

mately associated with that theoretical and reflective understanding. 

Students prefer using narrative arguments than algebraic ones. This 

result is convergent with results of other studies (Healy et al., 2000). 
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For students, proof had the function of explaining why what they 

believe is true is indeed true. According to Hanna (2000: p. 8), “in 

the educational domain, then, it is only natural to view proof first 

and foremost as explanation, and in consequence to value most 

highly those proofs which best help to explain”. 

The group members had different forms of participating in the work. 

In the target group only one student—Ricardo—had appropriated the 

proof totally. The other members group used ventriloquation 

(Wertsch, 1991) incorporating, in part, his discourse given Ricardo’s 

more powerful social status. The team videotaped was analysed in 

the present study as a community of practice (Wenger, 1998; 

Wenger et al., 2002): “community is an important element because 

learning is a matter of belonging as well as an intellectual process, 

involving the heart as well the head” (Wenger et al.: p. 29). The 

mathematical communication of proof increased ownership of mean-

ing for all members of the group. 
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Anexo 

 

 
ESCOLA BÁSICA 2-3 C de ÁLVARO VELHO 

LET’S INVESTIGATE -MATHEMATICS 

Name: ______________________________________ Nº : 

__________ Class; ____________ 

 

The symbols of some makes of car are mathematical figures contain-

ing axes of symmetry. 

 

By placing a mirror over an axis of symmetry you can find 

the whole figure through one part of it. 

1. Look at the star on the right and find out how many 

axes of symmetry it has. Make a drawing which shows 

what you have discovered. 

2.  Now use the sheet on the next page which has drawings of regu-

lar polygons you already know.   

a) Find all the axes of symmetry of each polygon. (Write 

down your results).  

b) Looking at the table you have filled in, what conclusions can you 

come to?  

c)For each of the regular polygons, explain how the axes of 

symmetry are placed in relation to the vertices and the 

sides. (Where do the axes of symmetry pass through?) 

3.  In the last question you found out how many axes of symmetry 

there are in an equilateral triangle. Now do experiments with other 

types of triangles and write down your conclusions about the number 

of axes of symmetry there are in each of them.  

 4.  There are also many quadrilaterals. For each of them, find out 

how many axes of symmetry there are. Make a sketch of what you 

have found out. 
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5.   What about a circle? How many axes of symmetry does it have?  

Adapted from APM (2000)(Publisher). Investigações Matemáticas 

na sala de aula: Propostas de trabalho. 

 


